Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(1): 94-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944754

RESUMO

The heat shock response is a critical component of the inflammatory cascade that prevents misfolding of new proteins and regulates immune responses. Activation of clusters of differentiation (CD)4+ T cells causes an upregulation of heat shock transcription factor, heat shock factor 1 (HSF1). We hypothesized that HSF1 promotes a pro-regulatory phenotype during inflammation. To validate this hypothesis, we interrogated cell-specific HSF1 knockout mice and HSF1 transgenic mice using in vitro and in vivo techniques. We determined that while HSF1 expression was induced by anti-CD3 stimulation alone, the combination of anti-CD3 and transforming growth factor ß, a vital cytokine for regulatory T cell (Treg) development, resulted in increased activating phosphorylation of HSF1, leading to increased nuclear translocation and binding to heat shock response elements. Using chromatin immunoprecipitation (ChIP), we demonstrate the direct binding of HSF1 to foxp3 in isolated murine CD4+ T cells, which in turn coincided with induction of FoxP3 expression. We defined that conditional knockout of HSF1 decreased development and function of Tregs and overexpression of HSF1 led to increased expression of FoxP3 along with enhanced Treg suppressive function. Adoptive transfer of CD45RBHigh CD4 colitogenic T cells along with HSF1 transgenic CD25+ Tregs prevented intestinal inflammation when wild-type Tregs did not. Finally, overexpression of HSF1 provided enhanced barrier function and protection from murine ileitis. This study demonstrates that HSF1 promotes Treg development and function and may represent both a crucial step in the development of induced regulatory T cells and an exciting target for the treatment of inflammatory diseases with a regulatory T-cell component. SIGNIFICANCE STATEMENT: The heat shock response (HSR) is a canonical stress response triggered by a multitude of stressors, including inflammation. Evidence supports the role of the HSR in regulating inflammation, yet there is a paucity of data on its influence in T cells specifically. Gut homeostasis reflects a balance between regulatory clusters of differentiation (CD)4+ T cells and pro-inflammatory T-helper (Th)17 cells. We show that upon activation within T cells, heat shock factor 1 (HSF1) translocates to the nucleus, and stimulates Treg-specific gene expression. HSF1 deficiency hinders Treg development and function and conversely, HSF1 overexpression enhances Treg development and function. While this work, focuses on HSF1 as a novel therapeutic target for intestinal inflammation, the findings have significance for a broad range of inflammatory conditions.


Assuntos
Inflamação , Linfócitos T Reguladores , Animais , Camundongos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Camundongos Knockout , Camundongos Transgênicos
2.
Geroscience ; 42(6): 1579-1591, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451848

RESUMO

The maintenance of skeletal muscle mass depends on the overall balance between the rates of protein synthesis and degradation. Thus, age-related muscle atrophy and function, commonly known as sarcopenia, may result from decreased protein synthesis, increased proteolysis, or simultaneous changes in both processes governed by complex multifactorial mechanisms. Growing evidence implicates oxidative stress and reactive oxygen species (ROS) as an essential regulator of proteolysis. Our previous studies have shown that genetic deletion of CuZn superoxide dismutase (CuZnSOD, Sod1) in mice leads to elevated oxidative stress, muscle atrophy and weakness, and an acceleration in age-related phenotypes associated with sarcopenia. The goal of this study is to determine whether oxidative stress directly influences the acceleration of proteolysis in skeletal muscle of Sod1-/- mice as a function of age. Compared to control, Sod1-/- muscle showed a significant elevation in protein carbonyls and 3-nitrotyrosine levels, suggesting high oxidative and nitrosative protein modifications were present. In addition, age-dependent muscle atrophy in Sod1-/- muscle was accompanied by an upregulation of the cysteine proteases, calpain, and caspase-3, which are known to play a key role in the initial breakdown of sarcomeres during atrophic conditions. Furthermore, an increase in oxidative stress-induced muscle atrophy was also strongly coupled with simultaneous activation of two major proteolytic systems, the ubiquitin-proteasome and lysosomal autophagy pathways. Collectively, our data suggest that chronic oxidative stress in Sod1-/- mice accelerates age-dependent muscle atrophy by enhancing coordinated activation of the proteolytic systems, thereby resulting in overall protein degradation.


Assuntos
Atrofia Muscular , Superóxidos , Animais , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo , Proteólise , Superóxidos/metabolismo
3.
Invest Ophthalmol Vis Sci ; 60(4): 965-977, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884523

RESUMO

Purpose: Retinal ischemia, a common cause of several vision-threatening diseases, contributes to the death of retinal neurons, particularly retinal ganglion cells (RGCs). Heat shock transcription factor 1 (HSF1), a stress-responsive protein, has been shown to be important in response to cellular stress stimuli, including ischemia. This study is to investigate whether HSF1 has a role in retinal neuronal injury in a mouse model of retinal ischemia-reperfusion (IR). Methods: IR was induced by inserting an infusion needle into the anterior chamber of the right eye and elevating a saline reservoir connected to the needle to raise the intraocular pressure to 110 mm Hg for 45 minutes. HSF1, Hsp70, molecules in the endoplasmic reticulum (ER) stress branches, tau phosphorylation, inflammatory molecules, and RGC injury were determined by immunohistochemistry, Western blot, or quantitative PCR. Results: HSF1 expression was significantly increased in the retina 6 hours after IR. Using our novel transgenic mice carrying full-length human HSF gene, we demonstrated that IR-induced retinal neuronal apoptosis and necroptosis were abrogated 12 hours after IR. RGCs and their function were preserved in the HSF1 transgenic mice 7 days after IR. Mechanistically, the beneficial effects of HSF1 may be mediated by its induction of chaperone protein Hsp70 and alleviation of ER stress, leading to decreased tau phosphorylation and attenuated inflammatory response 12 to 24 hours after IR. Conclusions: These data provide compelling evidence that HSF1 is neuroprotective against retinal IR injury, and boosting HSF1 expression may be a beneficial strategy to limit neuronal degeneration in retinal diseases.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição de Choque Térmico/genética , Traumatismos do Nervo Óptico/genética , Traumatismo por Reperfusão/genética , Doenças Retinianas/genética , Animais , Western Blotting , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Leucostasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compressão Nervosa , Neuroproteção/fisiologia , Traumatismos do Nervo Óptico/prevenção & controle , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/prevenção & controle , Doenças Retinianas/prevenção & controle , Tomografia de Coerência Óptica , Proteínas tau/metabolismo
4.
Biotechnol J ; 13(3): e1700227, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29072373

RESUMO

CHO cells are the most prevalent platform for modern bio-therapeutic production. Currently, there are several CHO cell lines used in bioproduction with distinct characteristics and unique genotypes and phenotypes. These differences limit advances in productivity and quality that can be achieved by the most common approaches to bioprocess optimization and cell line engineering. Incorporating omics-based approaches into current bioproduction processes will complement traditional methodologies to maximize gains from CHO engineering and bioprocess improvements. In order to highlight the utility of omics technologies in CHO bioproduction, the authors discuss current applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, lipidomics, fluxomics, glycomics, and multi-omics approaches and the potential they hold for the future of bioproduction. Multiple omics approaches are currently being used to improve CHO bioprocesses; however, the application of these technologies is still limited. As more CHO-omic datasets become available and integrated into systems models, the authors expect significant gains in product yield and quality. While individual omics technologies provide incremental improvements in bioproduction, the authors will likely see the most significant gains by applying multi-omics and systems biology approaches to individual CHO cell lines.


Assuntos
Células CHO , Genômica , Metabolômica , Proteômica , Animais , Engenharia Celular/métodos , Cricetulus , Glicômica , Humanos , Biologia de Sistemas
5.
J Neurosci Res ; 94(7): 671-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26994698

RESUMO

TAR DNA binding protein 43 (TDP-43) is a nuclear protein that has been shown to have altered homeostasis in the form of neuronal nuclear and cytoplasmic aggregates in some familial and almost all cases of sporadic amyotrophic lateral sclerosis as well as 51% of frontotemporal lobar degeneration and 57% of Alzheimer's disease cases. Heat shock proteins (HSPs), such as HSP70, recognize misfolded or aggregated proteins and refold, disaggregate, or turn them over and are upregulated by the master transcription factor heat shock factor 1 (HSF1). Here, we explore the effect of HSF1 overexpression on proteotoxic stress-related alterations in TDP-43 solubility, proteolytic processing, and cytotoxicity. HSF1 overexpression reduced TDP-43-positive puncta concomitantly with upregulating HSP70 and HSP90 protein levels. HSF1 overexpression or pharmacological activation sustained TDP-43 solubility and significantly reduced truncation of TDP-43 in response to inhibition of the proteasome with Z-Leu-Leu-Leu-al, and this was reversed by HSF1 inhibition. HSF1 activation conferred protection against toxicity associated with TDP-43 C-terminal fragments without globally increasing the activity of the ubiquitin proteasome system (UPS) while concomitantly reducing the induction of autophagy, suggesting that HSF1 protection is an early event. In support of this, inhibition of HSP70 ATPase activity further reduced TDP-43 solubility. HSF1 knockout significantly increased TDP-43 insolubility and accelerated TDP-43 fragmentation in response to proteotoxic stress. Overall, this study shows that HSF1 overexpression protects against TDP-43 pathology by upregulation of chaperones, especially HSP70, rather than enhancing autophagy or the UPS during times of proteotoxic stress. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSP70/biossíntese , Fatores de Transcrição de Choque Térmico/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/toxicidade , Fatores de Transcrição de Choque Térmico/biossíntese , Humanos , Camundongos , Camundongos Knockout , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Solubilidade , Ubiquitina/metabolismo
6.
Biochim Biophys Acta ; 1842(11): 2060-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25018089

RESUMO

The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.

7.
Mol Neurodegener ; 8: 43, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256636

RESUMO

BACKGROUND: Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel fluorescence-based proteomic assay using 4,4'-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1 and other proteins in situ. RESULTS: Covalent bisANS labeling of spinal cord extracts revealed that alterations in surface hydrophobicity of H46R/H48Q mutations in SOD1 provoke formation of high molecular weight SOD1 species with lowered solubility, likely due to increased exposure of hydrophobic surfaces. BisANS was docked on the H46R/H48Q SOD1 structure at the disordered copper binding and electrostatic loops of mutant SOD1, but not non-mutant WT SOD1. 16 non-SOD1 proteins were also identified that exhibited altered surface hydrophobicity in the H46R/H48Q mutant mouse model of ALS, including proteins involved in energy metabolism, cytoskeleton, signaling, and protein quality control. Heat shock proteins (HSPs) were also enriched in the detergent-insoluble fractions with SOD1. Given that chaperones recognize proteins with exposed hydrophobic surfaces as substrates and the importance of protein homeostasis in ALS, we crossed SOD1 H46R/H48Q mutant mice with mice over-expressing the heat shock factor 1 (HSF1) transcription factor. Here we showed that HSF1 over-expression in H46R/H48Q ALS mice enhanced proteostasis as evidenced by increased expression of HSPs in motor neurons and astrocytes and increased solubility of mutant SOD1. HSF1 over-expression significantly reduced body weight loss, delayed ALS disease onset, decreases cases of early disease, and increased survival for the 25th percentile in an H46R/H48Q SOD1 background. HSF1 overexpression did not affect macroautophagy in the ALS background, but was associated with maintenance of carboxyl terminus of Hsp70 interacting protein (CHIP) expression which declined in H46R/H48Q mice. CONCLUSION: Our results uncover the potential importance of changes in protein surface hydrophobicity of SOD1 and other non-SOD1 proteins in ALS, and how strategies that activate HSF1 are valid therapies for ALS and other age-associated proteinopathies.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Superóxido Dismutase/química , Fatores de Transcrição/metabolismo , Esclerose Amiotrófica Lateral/genética , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Imunofluorescência , Fatores de Transcrição de Choque Térmico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
8.
Biochem Biophys Res Commun ; 434(4): 815-9, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23618867

RESUMO

The 'oxidative stress theory of aging' predicts that aging is primarily regulated by progressive accumulation of oxidized macromolecules that cause deleterious effects to cellular homeostasis and induces a decline in physiological function. However, our reports on the detection of higher level of oxidized protein carbonyls in the soluble cellular fractions of long-living rodent naked-mole rats (NMRs, lifespan ~30yrs) compared to short-lived mice (lifespan ~3.5yrs) apparently contradicts a key tenet of the oxidative theory. As oxidation often inactivates enzyme function and induces higher-order soluble oligomers, we performed a comprehensive study to measure global protein carbonyl level in different tissues of age-matched NMRs and mice to determine if the traditional concept of oxidation mediated impairment of function and induction of higher-order structures of proteins are upheld in the NMRs. We made three intriguing observations with NMRs proteins: (1) protein carbonyl is significantly elevated across different tissues despite of its exceptional longevity, (2) enzyme function is restored despite of experiencing higher level of protein carbonylation, and (3) enzymes show lesser sensitivity to form higher-order non-reducible oligomers compared to short-living mouse proteins in response to oxidative stress. These observations were made based on the global analysis of protein carbonyl and identification of two heavily carbonylated proteins in the kidney, triosephosphate isomerase (TPI) and cytosolic peroxiredoxin (Prdx1). These un-expected intriguing observations thus strongly suggest that oxidative modification may not be the only criteria for impairment of protein and enzyme function; cellular environment is likely be the critical determining factor in this process and may be the underlying mechanism for exceptional longevity of NMR.


Assuntos
Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Carbonilação Proteica/fisiologia , Proteômica/métodos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Citosol/enzimologia , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Rim/enzimologia , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos-Toupeira , Miocárdio/metabolismo , Oxirredução , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Multimerização Proteica , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo
9.
J Neurochem ; 124(6): 880-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23121022

RESUMO

Rapamycin, an inhibitor of target-of-rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)-like deficits, reduces amyloid-beta (Aß) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control- and rapamycin-treated PDAPP mice. Proteins with reported chaperone-like activity were overrepresented among proteins up-regulated in rapamycin-fed PDAPP mice and the master regulator of the heat-shock response, heat-shock factor 1, was activated. This was accompanied by the up-regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin-fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B-crystallin, however, was unchanged, and the cap-dependent translation inhibitor 4E-BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre-existing mRNAs as a consequence of inhibition of cap-dependent translation. The effects of rapamycin on the reduction of Aß, up-regulation of chaperones, and amelioration of AD-like cognitive deficits were recapitulated by transgenic over-expression of heat-shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target-of-rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Fenótipo , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/biossíntese , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição de Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Regulação para Cima/genética
10.
J Gerontol A Biol Sci Med Sci ; 67(8): 853-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22219522

RESUMO

The application of proteomics methodology for analyzing human blood samples is of increasing importance as a noninvasive method for understanding, detecting, and monitoring disease. In particular, glycoproteomic analysis may be useful in the study of age-related diseases and syndromes, such as frailty. This study demonstrates the use of methodology for isolating plasma glycoproteins using lectins, comparing the glycoproteome by frailty status using two-dimensional polyacrylamide gel electrophoresis and identifying glycoproteins using mass spectrometry. In a pilot study, we found seven glycoproteins to differ by at least twofold in prefrail compared with nonfrail older adults, including haptoglobin, transferrin, and fibrinogen, consistent with known inflammatory and hematologic changes associated with frailty. Enzyme-linked immunosorbent assay analysis found that plasma transferrin concentration was increased in frail and prefrail older adults compared with nonfrail, confirming our proteomic findings. This work provides evidence for using a reproducible methodology for conducting clinical proteomic comparative studies of age-related diseases.


Assuntos
Biomarcadores/química , Glicoproteínas/sangue , Idoso de 80 Anos ou mais , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Fibrinogênio/análise , Idoso Fragilizado , Glicoproteínas/química , Haptoglobinas/análise , Humanos , Lectinas/química , Espectrometria de Massas , Proteômica , Transferrina/análise
11.
Biochem Biophys Res Commun ; 402(1): 59-65, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20920476

RESUMO

The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1(+/0)) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1(+/0) mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1(+/0) cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1(+/0) cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.


Assuntos
Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Camundongos , Deficiências na Proteostase/metabolismo , Fatores de Transcrição/genética , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Camundongos Transgênicos , Peptídeos/farmacologia , Dobramento de Proteína , Deficiências na Proteostase/genética
12.
Methods Enzymol ; 473: 161-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20513477

RESUMO

While most of the amino acids in proteins are potential targets for oxidation, the thiol group in cysteine is one of the most reactive amino acid side chains. The thiol group can be oxidized to several states, including the disulfide bond. Despite the known sensitivity of cysteine to oxidation and the physiological importance of the thiol group to protein structure and function, little information is available on the oxidative modification of cysteine residues in proteins because of the lack of reproducible and sensitive assays to measure cysteine oxidation in the proteome. We have developed a fluorescence-based assay that allows one to quantify both the global level of protein disulfides in the cellular proteome as well as the disulfide content of individual proteins. This fluorescence-based assay is able to detect an increase in global protein disulfide levels after oxidative stress in vitro or in vivo. Using this assay, we show that the global protein disulfide levels increase significantly with age in liver cytosolic proteins, and we identified 11 proteins that show a more than twofold increase in disulfide content with age. Thus, the fluorescence-based assay we have developed allows one to quantify changes in the oxidation of cysteine residues to disulfides in the proteome of a cell or tissue.


Assuntos
Dissulfetos/análise , Proteínas/análise , Proteômica/métodos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Estruturas Animais/química , Estruturas Animais/metabolismo , Animais , Dissulfetos/metabolismo , Fluorescência , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Proteínas/metabolismo
13.
Cell Metab ; 11(5): 412-26, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20444421

RESUMO

Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1alpha protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.


Assuntos
Insulina/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Transdução de Sinais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio/metabolismo , Humanos , Metaloproteases/deficiência , Metaloproteases/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Músculo Esquelético/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição
14.
Free Radic Biol Med ; 48(4): 590-6, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20005946

RESUMO

Extracellular superoxide dismutase (ecSOD) protects the extracellular matrix from oxidative stress. We previously reported a new allele for ecSOD, expressed in 129P3/J mice (129), which differs from the wild type (wt), expressed in C57BL/6J and other strains, by two amino acid substitutions and a 10-bp deletion in the 3' UTR of the mRNA (A. Pierce et al., 2003, Arterioscler. Thromb. Vasc. Biol.23:1820-1825). The newly discovered allele is associated with a phenotype of significantly increased circulating and heparin-releasable enzyme activities and levels. To examine the properties of the two forms of ecSOD in an identical environment we generated, by extensive backcrossing of ecSOD heterozygous progeny to C57BL/6J females, a congenic C57 strain with the 129 (or wt) allele of ecSOD. These mice are homozygous for nearly 5000 SNPs across all chromosomes, as determined by the Affymetrix Parallele Mouse 5K SNP panel. This study describes the generation of the congenic mice (genetically >99.8% identical) and their ecSOD phenotype. The congenic mouse plasma ecSOD activity before and after heparin administration recapitulates the differences reported in the founder mice. Tissue enzyme distribution is similar in both congenic groups, although the 129 allele is associated with higher levels of enzyme expression despite lower levels of enzyme mRNA. In these characteristics the phenotype is allele driven, with little impact from the rest of the genome. The congenic mice carrying the 129 allele have mRNA levels that are in between those in the founder 129P3/J and C57BL/6J strains. We conclude that the ecSOD phenotype in most aspects of enzyme expression is allele driven, with the exception of tissue mRNA levels, for which a significant contribution by the surrounding (host) genome is observed. These results also suggest potential allele-specific differences in the regulation of ecSOD synthesis and intracellular processing/secretion of ecSOD, independent of the genotype context. Most importantly, the congenic mice offer an excellent model to examine the regulatory mechanisms of ecSOD expression and the role of ecSOD in various diseases involving oxidative stress.


Assuntos
Repetições de Microssatélites/genética , Polimorfismo Genético , Superóxido Dismutase/genética , Regiões 3' não Traduzidas , Alelos , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Heparina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
15.
FASEB J ; 23(7): 2317-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19244163

RESUMO

Altered structure, and hence function, of cellular macromolecules caused by oxidation can contribute to loss of physiological function with age. Here, we tested whether the lifespan of bats, which generally live far longer than predicted by their size, could be explained by reduced protein damage relative to short-lived mice. We show significantly lower protein oxidation (carbonylation) in Mexican free-tailed bats (Tadarida brasiliensis) relative to mice, and a trend for lower oxidation in samples from cave myotis bats (Myotis velifer) relative to mice. Both species of bat show in vivo and in vitro resistance to protein oxidation under conditions of acute oxidative stress. These bat species also show low levels of protein ubiquitination in total protein lysates along with reduced proteasome activity, suggesting diminished protein damage and removal in bats. Lastly, we show that bat-derived protein fractions are resistant to urea-induced protein unfolding relative to the level of unfolding detected in fractions from mice. Together, these data suggest that long lifespan in some bat species might be regulated by very efficient maintenance of protein homeostasis.


Assuntos
Homeostase , Longevidade , Proteínas/metabolismo , Animais , Quirópteros , Oxirredução , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Desnaturação Proteica , Especificidade da Espécie , Ubiquitinação
16.
J Mol Biol ; 382(5): 1195-210, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18706911

RESUMO

It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS.


Assuntos
Esclerose Amiotrófica Lateral/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Sequência de Aminoácidos , Esclerose Amiotrófica Lateral/genética , Naftalenossulfonato de Anilina , Animais , Sítios de Ligação/genética , Creatina Quinase/química , Creatina Quinase/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Corantes Fluorescentes , Gliceraldeído-3-Fosfato Desidrogenases/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Conformação Proteica
17.
Free Radic Biol Med ; 43(12): 1584-93, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18037124

RESUMO

Molecular events that control skeletal muscle injury and regeneration are poorly understood. However, inflammation associated with oxidative stress is considered a key player in modulating this process. To understand the consequences of oxidative stress associated with muscle injury, inflammation, and regeneration, hind-limb muscles of C57Bl/6J mice were studied after injection of cardiotoxin (CT). Within 1 day post-CT injection, polymorphonuclear neutrophilic leukocyte accumulation was extensive. Compared to baseline, tissue myeloperoxidase (MPO) activity was elevated eight- and fivefold at 1 and 7 days post-CT, respectively. Ubiquitinylated protein was elevated 1 day postinjury and returned to baseline by 21 days. Cysteine residues of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were irreversibly oxidized within 1 day post-CT injection and were associated with protein conformational changes that fully recovered after 21 days. Importantly, protein structural alterations occurred in conjunction with significant decreases in CK activity at 1, 3, and 7 days post-CT injury. Interestingly, elevations in tissue MPO activity paralleled the time course of conformational changes in CK and GAPDH. In combination, these results demonstrate that muscle proteins in vivo are structurally and functionally altered via the generation of reactive oxygen species produced during inflammatory events after muscle injury and preceding muscle regeneration.


Assuntos
Músculo Esquelético/enzimologia , Músculo Esquelético/lesões , Animais , Cardiotoxinas/toxicidade , Creatina Quinase/química , Creatina Quinase/metabolismo , Cisteína/química , Radicais Livres/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Oxirredução , Estresse Oxidativo , Conformação Proteica/efeitos dos fármacos , Regeneração/fisiologia
18.
Atherosclerosis ; 193(1): 28-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16973170

RESUMO

We previously demonstrated that hyperbaric oxygen (HBO) treatment inhibits diet-induced atherosclerosis in New Zealand White rabbits. In the present study we investigate the mechanisms that might be involved in the athero-protective effect of HBO treatment in a well-accepted model of atherosclerosis, the apoE knockout (KO) mouse. We examine the effects of daily HBO treatment (for 5 and 10 weeks) on the components of the anti-oxidant defense mechanism and the redox state in blood, liver and aortic tissues and compare them to those of untreated apoE KO mice. HBO treatment results in a significant reduction of aortic cholesterol content and decreased fatty streak formation. These changes are accompanied by a significant reduction of autoantibodies against oxidatively modified LDL and profound changes in the redox state of the liver and aortic tissues. A 10-week treatment significantly reduces hepatic levels of TBARS and oxidized glutathione, while significantly increases the levels of reduced glutathione, glutathione reductase (GR), transferase, Se-dependent glutathione peroxidase and catalase (CAT). The effects of HBO treatment are similar in the aortic tissues. These observations provide evidence that HBO treatment has a powerful effect on the redox state of relevant tissues and produces an environment that inhibits oxidation. The anti-oxidant response may be the key to the anti-atherogenic effect of HBO treatment.


Assuntos
Antioxidantes/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Oxigenoterapia Hiperbárica , Animais , Aorta Torácica/patologia , Apolipoproteínas E/genética , Arildialquilfosfatase/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Autoanticorpos/sangue , Colesterol/sangue , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos , Lipoproteínas LDL/imunologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Coelhos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
19.
Aging Cell ; 5(6): 463-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17054663

RESUMO

Oxidative stress is reputed to be a significant contributor to the aging process and a key factor affecting species longevity. The tremendous natural variation in maximum species lifespan may be due to interspecific differences in reactive oxygen species generation, antioxidant defenses and/or levels of accrued oxidative damage to cellular macromolecules (such as DNA, lipids and proteins). The present study tests if the exceptional longevity of the longest living (> 28.3 years) rodent species known, the naked mole-rat (NMR, Heterocephalus glaber), is associated with attenuated levels of oxidative stress. We compare antioxidant defenses (reduced glutathione, GSH), redox status (GSH/GSSG), as well as lipid (malondialdehyde and isoprostanes), DNA (8-OHdG), and protein (carbonyls) oxidation levels in urine and various tissues from both mole-rats and similar-sized mice. Significantly lower GSH and GSH/GSSG in mole-rats indicate poorer antioxidant capacity and a surprisingly more pro-oxidative cellular environment, manifested by 10-fold higher levels of in vivo lipid peroxidation. Furthermore, mole-rats exhibit greater levels of accrued oxidative damage to lipids (twofold), DNA (approximately two to eight times) and proteins (1.5 to 2-fold) than physiologically age-matched mice, and equal to that of same-aged mice. Given that NMRs live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of this species.


Assuntos
Envelhecimento/genética , Senescência Celular/fisiologia , Longevidade/genética , Ratos-Toupeira/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Tamanho Corporal/fisiologia , Quimera , Dano ao DNA/fisiologia , Metabolismo Energético/fisiologia , Glutationa/metabolismo , Peroxidação de Lipídeos/fisiologia , Malondialdeído/metabolismo , Camundongos , Oxirredução , Carbonilação Proteica/fisiologia , Espécies Reativas de Oxigênio/metabolismo
20.
Mech Ageing Dev ; 127(11): 849-61, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17002888

RESUMO

Protein carbonyls are commonly used as a marker of protein oxidation in cells and tissues. Currently, 2,4-dinitrophenyl hydrazine (DNPH) is widely used (spectrophotometrically or immunologically) to quantify the global carbonyl levels in proteins and identify the specific proteins that are carbonylated. We have adapted a fluorescence-based approach using fluorescein-5-thiosemicarbazide (FTC), to quantify the global protein carbonyls as well as the carbonyl levels on individual proteins in the proteome. Protein carbonyls generated in vitro were quantified by labeling the oxidized proteins with FTC followed by separating the FTC-labeled protein from free probe by gel electrophoresis. The reaction of FTC with protein carbonyls was found to be specific for carbonyl groups. We measured protein carbonyl levels in the livers of young and old mice, and found a significant increase (two-fold) in the global protein carbonyl levels with age. Using 2-D gel electrophoresis, we used this assay to directly measure the changes in protein carbonyl levels in specific proteins. We identified 12 proteins showing a greater than two-fold increase in carbonyl content (pmoles of carbonyls/microg of protein) with age. Most of the 12 proteins contained transition metal binding sites, with Cu/Zn superoxide dismutase containing the highest molar ratio of carbonyls in old mice. Thus, the fluorescence-based assay gives investigators the ability to identify potential target proteins that become oxidized under different pathological and physiological conditions.


Assuntos
Envelhecimento/fisiologia , Fígado/metabolismo , Carbonilação Proteica , Proteômica , Animais , Citosol/metabolismo , Eletroforese em Gel Bidimensional , Fluoresceínas/análise , Fluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...